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MAGNETOHYDRODYNAMICS OF HEAVY FLUIDS

R. Kh. Zeitunyan UDC 538.4

Four dimensionless parameters appear in the equations in connection with the discussion of the time~
independent flow of an ideal compressible rotating plasma in a gravitational field: the Froude Fr, Rossby Ro,
Mach M,, and Alfvén A; numbers. Here it is assumed that A; and M are simultaneously very small and satisfy
the similarity relationship A%/M; = vo, where vy = O(1) is a constant, First the case is analyzed in which Fr—0
and A%/F r% = Ay, where Ay = O{1) is a constant; the classical approximation of static equilibrium is obtained. ¥
one notes that Fr? = yM}/B), where By is the ratio of characteristic lengths, then it is necessary to discuss two
cases. The first case corresponds to By = 0(1) , and a limiting system of equations is derived which permits
studying atmospheric motions near the planets of the solar system, for which the characteristic angular rota-
tional velocity is not very high (A %A%o«l). The second case corresponds to Sg— 0 and B/My = ugy, where pg =
o(1) is a new constant; it is possible to obtain a limiting system of equations which is suitable for analysis of
the development of sunspots, where the magnetic and convective effects are closely linked.

1. Introduction

We will assume that only gravitational and electromagnetic forces are acting on the "fluid medium?®,
which is freated as an ideal plasma (see [1] in connection with the definition of an ideal plasma). The equations
which describe a nonsteady adiabatic flow of an infinitely conductive plasma rotating with angular velocity
when viscosity and thermal conductivity are neglected have the form (the magnetic permeability p is assumed
to be constant):

o{DVIDt + 2[@-v1} + yp + pge; = (1/p)[rotB-Bl; 1.5
dplat -+ div(pv) = 0y (1.2)
divB = 0; (1.3)

DT y—1TD
—gt——‘lv—?—p—f‘o, (1.4)
0B/3t + rot [B-v] = 0. 1.5)

The plasma is treated as an ideal gas with constant specific heats cp and cy (v = cp/cv); therefore
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p = RpT,, (1.6)

where R = cp(v— 1)/¥. Equations (1.1)-(1.6) form a closed system for the velocity vector v relative to the
medium (D/Dt = 8/6t+(v*V)), the magnetic 1nduct10n vector B, and the scalars p (pressure), p (density), and T
(temperature).

Equations (1.1)-(1.6) are written in a system of rectangular cartesian coordinates Ox;x,x;; theej are unit
vectors along the axes; and

!

J
A\ 5}7 [

Of course, it is necessary to supplement these equations with initial and boundary conditions; in particu-
lar, it would be necessary for the velocity to write the slipping condition along the wall. Concerning the mag-
netic field, since the electrical conductivity is assumed to be infinite, it is necessary to set up conditions for B
similar to the conditions for v. Some limiting forms of the system (1.1)-(1.6) are derived in this paper, and
dimensionless parameters are exhibited which determine flows which satisfy Eqgs. (1.1)-(1.6).

2. The Reduced Equations

Equation (1.1) contains five dimensionless parameters, which permit assessing the relative importance
of different effects. We will make the replacement of variables:

vV = Uou, B= Bob, X = L0§1 t = tot,
p=pop', T = T,T", p = pp’, @ = Q0,

where Ug, By, Ly, to, Pgs Tos Py and Qg are characteristic scalar quantities, Then one can write Eq. (1 1) in the
form

{St au +(uv)u+ 5 [o- u1}+ —vr + 5 P'e =5 5 [rotb-b], 2.1
0

where the dimensionless parameters
St = Lo/toUo, Ro = UO/ZQOLN Mo == Uo/(‘YRTo)UZ'
Fr = Uy/(gLo)¥2, Ay = Uy/[Bo/(npo)'/?]
are introduced, which are the Strouhal, Rossby, Mach, Froude, and Alfvén numbers, respectively.
The case Fr = » corresponds to classical magnetohydrodynamics without the gravitational force taken
into account. When Fr = «, it is more convenient to conduct the analysis by using perturbations of thermo-

dynamic quantities [2]: ,
%= (p — Poo)/Pooy ® = (T — T}/ T, 0 = (p — Pc)/Poy

where p_, p,» T, are generally functions of the vertical coordinate xj, characterize the thermodynamic
standard state, and satisfy the relationships

Poo = BpaT e, 0puldzs + pog = 0, —dT o/dz3 = I
(the quantity ', is assumed to be known).

(2.2)

It should be noted that the standard state (2.2) is in agreement with the system of equations (1.1)-(1.6) if,

in particular, ] .
V=V = Ug-,el-{— Vggez

is a constant veloclty vector and B= B, is a harmonic vector, i.e., rot B, = 0 and d1v B, = 0, which is per-
pendicular to vgo (voo *B,, = 0) and Q; = 0. Thus if Qy=0 (Ro= ) and one sets T'w, =T = const, then one can
- write in place of Egs. (1.1)-(1.6) the following dimensionless equations:

Teo
A +0) {St—z%—[—(u-v) u} v F‘rz-u + 0) e, = %glrotb-b],

Stg:—-F u-yo (14 0) [(“o—ﬁo)_:r_s' +divu] =0,

(1+c){St——+uve} ;‘{St—"i‘+ Vn] (1+ﬁ)[7 1ﬁo—¢o]%2’:=0_, 2.3)

St—+rot[b ul =0, divhb =0, .ﬂ=o+®+°'@'

where two new dimension]less parameters
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ﬁo = R—E ] (2'4)

are introduced which characterize the standard state,

3. The Case Fr — 0

Let us consider Eq. (2.1) on the assumption of quasisteadiness (St=0). We will assume that the Alfvén
number A, is infinitely small (Bg>> vipoUy),,and we will derive the limiting form of the equation

A? A2
o {A% (u-y) ut-g2 o ul} + . VP + (43/Fe) o'eg = [rot b-bl, (3.1)

when Ay — 0 with ¢ fixed,

In order to derive the supporting equation from (3.1), it is necessary that M; or Ro also tend to zero,
Assuming in addition that Fr —0, we find the following limiting equation:

v, ’
% [0 u,] + “;— VD1 + Ao = [rot by-byl, (3.2)
if one assumes the existence of the similarity relationships
AL AS A} 3.3
Ro = o T/{%’““’m = 8.8
and seeks the solution of Eq. (3.1) in the form of the asymptotic expansions
u=1y40(1), b=b+o(l), p'=1--Mpi+o(M),
p =1+ M} + 0 (M,).
Setting
‘ I" =1 + M1 + 0 (My),
one can combine the limiting equation (3.2) with the following equations:
div uy = 0, div b, = 0; 3.4)
y—1 (3.5)

rot [by-upl =0, up-v7Ty = 7 -y 3, p1=p; —T1.

We note that the limiting system (3.2), (3.4), and (3.5) remains valid on the assumption

RT U2
0 (]
7 >L,> e

because B should tend to zero when My — 0 according to the relationship 8; =y %"-Mo which makes the last two
0

relationships in (3.3) and the second one from (2.4) independent. In a more particular case (ny=0) the limiting
system (3.2), (3.4), and (3.5) decomposes into three subsystems:

[rotby-by) = yP, divb,=0, P==-p}+ ks (3.6)
rot [by-uyl = 0, div u, = 0; 3.7

v —1 ’ . ? ’
"o'VT1=Y—?‘“VP1, pr=pi— Ty (3.8)

The subsystem (3.6), which we will call "static equilibrium," has been analyzed in particular in [3]; this
subsystem permits determining by and p; with the appropriate boundary conditions. We note that if one intro-
duces the two scalar potentials y and x according to the conditions

div by = 0= by = [yyp-yyl,
then the first of Egs. (3.6) gives
byyP = 0= P = II(y, %)
and the limiting form (3.6) is equivalent to a system of two first integrals (see {4] and [2])
rot by-yp = all/dy, rot by-yy = —all/dy. v
The function Il(y, x) is determined for continuous flows with the help of the boundary conditions. As soon as

the values of by and p; are found, one can calculate u; from the system (3.7) of linear equations in first-order
partial derivatives with respect to £, and then one can find Ty and p; from (3.8).
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4. The Case By = 0(1)

In order to clearly show the effect of a gravitational field, it is convenient to use the system of equa-
tions (2.3). We will consider the case f, = O(1), i.e., 1 is of the order of RTy/g. In addition let Aj—0, so that
A, = vg. We will seek a solution of Egs. (2.3) in the form of the following asymptotic expansions:

u=u, +o1), b = by + o(1), m = Men; + o(My), (4.1)
¢ = Mooy + o(My), © = My8; + o(M,).
If the Strouhal number St is fixed (or is identically equal to zero), we obtain a strong degeneracy in the
zeroth order (when My—0), since us,;= 0 follows from the third equation of the system (2.3) if one only assumes
that the parameter ¢4 introduced by the first of Eqs. (2.4) is not fixed but satisfies the condition

' —1
oy = T 7 Bo _ koMo: (4.2)

where k; is a constant similarity parameter, With the restriction (4.2) the limiting system of zeroth-order
equations, which "decouples" Eqs, (2.3) with Eqgs. (4.1) taken into account, takes on the following form if one

sets vy =0 and St=0:

. B .
T=0;+86;, divu,= ‘;For“ Us,e, divh, =0,

Y, ’
[rOt l"o' ho] = To {Teovnj. - ﬁoelea}r (403)
—1q k \
uo-v{el - X m nl} +T—? uz,o =0, rotfby.u,l =0,

where To=1— 7;1 Bokss Tw(0) = T,. The system (4.3) is strongly coupled and describes magnetoconvective

motion in relatively thick layers; the thicker the layer is, the weaker the gravitational field is and the higher
* the standard temperature on the surface of the earth is.

The system (4.3) may be of interest, in particular, for the study of flows in the atmospheres of planets
of the solar system [5]. It should be noted that the limiting equations (4.3) are applicable to the study of the
atmospheres of planets whose characteristic angular rotational velocity Q, satisfies the inequality

¢B}
90 & _—0.
- 2Rpp U, T,

5. The Case ;3 —0

Now let us assume that 8o—0 and My—0 in Eqs. (2,3), so that
Bo/Mp = mq,
where p; is a constant similarity parameter. Then it is necessary to seek the solution of Egs. (2.3) in the form
u = u, + o{1), b = by + o(1), 6 = gy + o(1),
8 = 8, + o(1), n = Myn; + o(M,).
When St= 0, we obtain the following limiting equation in the zeroth order by taking into account the second of
Egs. (3.3) (with y; as the second constant similarity parameter):

v, ’
[rot by-by] = T? [Ty + poSoesl,

u

Uy V0, + (1 + 05) {ao_;s,._o + div uo} =0, (5.1)

(1 +6o)uy-vO, = ;,:g‘ ug,0, Tot[by-up] =0, divhy=0, ©y(1+dp)=—0,.

The parameter «, in the system (5.1) is fixed; if one assumes that ay—0, then we obtain a new limiting system
in place of Eqgs. (5.1): .
‘ Uy yo, =0, divy, =0,
b/
[rot b,-by] = —?o'-(VM + HeToe3), (5.2)
div by, = 0, rot [by:u,] = 0, By = —ap/(1 4 ay).
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The limiting system corresponding to the Boussinesq approximation for small Rossby numbers is reduced
to the form (5.2) (see Ref, 6). The system (5.2) may be of interest in connection with the investigation of the
formadtion of sunspots, where magnetic and convective effects are coupled.

The theory of magnetohydrodynamic flow of a heavy fluid at small Alfvén numbers which has been out-
lined above is similar from the conceptual standpoint to the theory of the flow of a heavy rotating fluid at
small Rossby numbers, There is also a great analogy between the static equilibrium approximation (3.6) dis-
cussed in Sec.. 3 and the classical quasigeostrophic approximation in meteorology [6].
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SYMME TRIC COLLISION OF TWO-LAYER JETS
OF AN IDEAL INCOMPRESSIBLE LIQUID

S. A, Kinelovskii and Yu, A, Trishin UDC 532,522

1. We consider the problem of finding the potential flow arising after the symmetric collision of plane
two-~layer free jets of an ideal incompressible liquid, Assuming that the flow is steady state, we shall analyze
the conditions that must be satisfied in this case by the flows in the different layers of the colliding jets, For
simplicity, by virtue of the symmetry, we can replace the plane of symmetry with a rigid stationary wall and
consider the stationary problem of a two-layer jet of an ideal incompressible liquid hitting this wall. The flow
in each of the layers of the jet is characterized by its value of the Bernoulli integral constant, Assuming that
the pressure at infinity and on the free streamlines is zero, we denote by h the ratio of the Bernoulli integral
constants in the layers;

-Eplv’i (1.1
1 5 !
R AL

where v; and v, are the liquid velocities in the layer at infinity, and the subscripts 1 and 2 are assigned,
respectively, to the external (outside the wall) and internal layers of the two-layer jet. In the general case the
densities of the layers, p; and p,, and the velocities, v; and v,, are different. In addition, the problem also
depends on the geometric parameters specified at infinity, such as the thicknesses of the layers and the angle
of inclination of the jet to the wall. Depending on the values of all these parameters, it is possible in principle
to have three variants of the flow arising when a two-layer jet hits the wall; a) Theforwardjet (the pestle) is
inhomogeneous, while the return jet, (the cumulative jet) is homogeneous; b) the pestle and the cumulative jet
are homogeneous; c) the pestle is homogeneous, while the cumulative jet is inhomogeneous,

Figure 1 shows the flow configuration corresponding to condition a), with a homogeneous jet and an in-
homogeneous pestle, where p, is the density of the liquid layer external to the wall, p, is the density of the
liquid layer inside the wall, and their velocities at infinity are vy and v,; §; and 6, are the thicknesses of the
layers of the incident jet at the point at infinity, B; 6, is the thickness of the external layer of the pestle at the
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